14 research outputs found

    Low molecular weight poly((d,l)-lactide-co-caprolactone) liquid inks for diluent-free DLP printing of cell culture platforms

    Get PDF
    Digital light processing (DLP) printing offers the possibility of fabricating complex objects in a fast and reproducible manner. A main requirement for DLP printing is the use of inks with low viscosities that can flow under the printing platform in a short period of time. Its exploitation in tissue engineering applications has been centered on the use of hydrogel forming materials diluted in aqueous solutions or the use of polyesters in combination with diluents and heating platforms that aid in the reduction of their viscosity. The use of diluents, however, modifies the mechanical properties and reduces the shape fidelity of the printed objects and, the use of heating platforms results in vats with heterogeneous temperatures and ink viscosities. Here, we report on the synthesis of a library of methacrylated low molecular weight (<3000 g mol−1) homopolymers ((P(D,L)LA and PCL) and copolymers (P((D,L)LA-co-CL)) of 2- and 3-arms based on (D,L)-lactide and ε-caprolactone. The resulting inks possessed low viscosity that made them printable in the absence of diluents and heating elements. DLP printing of cubical and cylindrical patterns resulted in objects with a higher shape fidelity than their counterparts fabricated using diluents and with printed features on the order of 300 μm. The printed materials were biocompatible and supported the growth of human mesenchymal stem cells (hMSCs). Moreover, the variations in the composition resulted in polymers that enabled the attachment of hMSCs to different extents, leading to the formation of well-adhered cell monolayers or loosely adhered cell aggregates.The authors acknowledge the funding bodies and support through the EMAKIKER grant. S. C.-E. acknowledges the Spanish Ministry of Science and Innovation (MICINN) – State Investigation Agency (AEI) (PID2020-114901RA-I00). S. C.-E. and S. R.-D. acknowledge the Basque Government (PIBA_2022_1_0006). G. L.-J. acknowledges the Basque Government Predoctoral grant PRE_2021_1_0403. S. C.-E. and L. I. acknowledge the Provincial Council of Guipuzcoa. The project that gave rise to these results received the support of a fellowship from the “laCaixa” Foundation (ID100010434). The fellowship code is 117145. S. C.-E. acknowledges funding from the University of the Basque Country UPV/EHU within the framework of Grupos de Investigación (GIU21/033). A. A. acknowledges funding from PID2021-127191OB-I00 and RTI2018-101708-A-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. Grant RYC2018-025502-I funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”

    Thermostructural behavior in a series of lanthanide-containing polyoxotungstate hybrids with copper(II) complexes of the tetraazamacrocycle cyclam: a single-crystal-to-single-crystal transformation study

    Get PDF
    A series of 14 isostructural [Cu(cyclam)](2)[{Cu(cyclam)}4{(a-GeW11O39)Ln(H2O)-(OAc)(12)].18H(2)O (1-Ln, where Ln = La Lu; cyclam = 1,4,8,11-tetraazacyclotetradecane) polyoxometalate-based hybrids reported herein represent (i) the first example of a twodimensional covalent hybrid lattice involving the [{(aXWI 1039)Ln(H2O)(OAc)}2in- archetype and (ii) the first structural characterization of such a dimeric polyoxotungste for Ln = La and Pr as well as for the combination of X = Ge and Ln = Ce, Nd, Sm, or Lu. Compounds 1-Ln have been characterized by elemental analyses, infrared spectroscopy, and thermogravimetric analysis, and their thermostructural behavior has been monitored by powder and single-crystal Xray diffraction. The title compounds undergo two single-crystal-to-single-crystal transformations triggered dehydration leading to the [{Cu(cydam)}6{(alpha-GeW11O39)Ln(H2O)(OAc)}2]-4H(2)O intermediate (2-Ln, where Ln = Eu or Er) and [Cu(cyclam)]0.5[{Cu(cyclam)}55{(alpha-GeW11O39)Ln(0Ac)}2] (3-Ln, where Ln = Ce or Eu) final anhydrous phases, the latter evidencing a coordinatively unsaturated derivative of the dimeric archetype for the first time. These transitions involve formation and disruption of Cu Opom bonds that result in different {Cu(cydam)}(2+) moieties grafting onto and being released from Keggin surfaces, which reduces the dimensionality of 1-Ln to one-dimensional covalent assemblies for 2-Ln and 3-Ln. While all 3-Ln phases rehydrate fully upon exposure to air for 24 h, the kinetics governing the crystal transitions back toward 1Ln through 2-Ln depend on the nature of Ln. Under ambient moisture, the anhydrous structures fully revert back to the parent framework for Ln = La Sm, while the samples containing Eu to Lu afford mixtures of 1-Ln and 2-Ln and require immersion in water for the structural reversion to reach completion. Single-crystal X-ray diffraction analyses of the rehydrated 1R-Ln samples (Ln = Ce, Eu, and Er) support these observations.This work was funded by Eusko Jaurlaritza/Gobierno Vasco (Grant PIBA2018-59 and ELKARTEK bG18 10(2018/00054), MINECO (Grant MAT2017-89553-P), and UPV/EHU (Grants PPG17/37 and GIU17/050). S.R. thanks Obra Social la Caixa, Fundacion Caja Navarra, and UPNA for a research contract in the framework of the program "Captación del Talento". Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged

    A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks

    Get PDF
    In the last decades, the demand for electronics and, therefore, electronic waste, has increased. To reduce this electronic waste and the impact of this sector on the environment, it is necessary to develop biodegradable systems using naturally produced materials with low impact on the environment or systems that can degrade in a certain period. One way to manufacture these types of systems is by using printed electronics because the inks and the substrates used are sustainable. Printed electronics involve different methods of deposition, such as screen printing or inkjet printing. Depending on the method of deposition selected, the developed inks should have different properties, such as viscosity or solid content. To produce sustainable inks, it is necessary to ensure that most of the materials used in the formulation are biobased, biodegradable, or not considered critical raw materials. In this review, different inks for inkjet printing or screen printing that are considered sustainable, and the materials that can be used to formulate them, are collected. Printed electronics need inks with different functionalities, which can be mainly classified into three groups: conductive, dielectric, or piezoelectric inks. Materials need to be selected depending on the ink&rsquo;s final purpose. For example, functional materials such as carbon or biobased silver should be used to secure the conductivity of an ink, a material with dielectric properties could be used to develop a dielectric ink, or materials that present piezoelectric properties could be mixed with different binders to develop a piezoelectric ink. A good combination of all the components selected must be achieved to ensure the proper features of each ink.This publication is supported by the SUINK project funded by the European Union’s Horizon Europe research and innovation programme under Grant Agreement No. 101070112. Funded by the Basque Government ELKARTEK2021 (KK-2021/00040) and ELKARTEK2023 KK-2023/0005

    Testing Wastewater Treatment Plant Effluent Effects on Microbial and Detritivore Performance: a Combined Field and Laboratory Experiment

    Get PDF
    The amount of pollutants and nutrients entering rivers via point sources is increasing along with human population and activity. Although wastewater treatment plants (WWTPs) greatly reduce pollutant loads into the environment, excess nutrient loading is a problem in many streams. Using a Community and Ecosystem Function (CEF) approach, we quantified the effects of WWTP effluent on the performance of microbes and detritivores associated to organic matter decomposition, a key ecosystem process. We measured organic matter breakdown rates, respiration rates and exo-enzymatic activities of aquatic microbes. We also measured food consumption and growth rates and RNA to body-mass ratios (RNA:BM) of a dominant amphipod Echinogammarus berilloni. We predicted responses to follow a subsidy-stress pattern and differences between treatments to increase over time. To examine temporal effects of effluent, we performed a laboratory microcosm experiment under a range of effluent concentrations (0, 20, 40, 60, 80 and 100%), taking samples over time (days 8, 15 and 30; 4 and 10 replicates to assess microbe and detritivore performance respectively, per treatment and day). This experiment was combined with a field in situ Before-After Control-Impact Paired (BACIP) experiment whereby we added WWTP effluent poured (10 L s(-1) during 20-40 min every 2 h) into a stream and collected microbial and detritivore samples at days 8 and 15 (5 and 15 replicates to assess the microbe and detritivore performance respectively, per period, reach and sampling day). Responses were clearer in the laboratory experiment, where the effluent caused a general subsidy response. Field measures did not show any significant response, probably because of the high dilution of the effluent in stream water (average of 1.6%). None of the measured variables in any of the experiments followed the predicted subsidy-stress response. Microbial breakdown, respiration rates, exo-enzymatic activities and invertebrate RNA:BM increased with effluent concentrations. Differences in microbial respiration and exo-enzymatic activities among effluent treatments increased with incubation time, whereas microbial breakdown rates and RNA:BM were consistent over time. At the end of the laboratory experiment, microbial respiration rates increased 156% and RN:BM 115% at 100% effluent concentration. Detritivore consumption and growth rates increased asymptotically, and both responses increased with by incubation time. Our results indicate that WWTP effluent stimulates microbial activities and alters detritivore performance, and stream water dilution may mitigate these effects.This work has been supported by the EU7th Framework Programme Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. We also acknowledge financial support in terms of pre doctoral grants from the University of the Basque Country UPV/EHU (L. Solagaistua) and the Basque Government (I. de Guzman, L. Mijangos). The manuscript benefited greatly from the valuable comments of John Kominoski and two anonymous referees. Also SGIker technical and human support (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    Bayesian networks, rule induction and logistic regression in the prediction of women survival suffering from breast cancer

    Full text link
    In this paper we present an empirical comparison between several paradigms coming from Statistics and Artificial Intelligence for solving a supervised classification problem. The empirically compared paradigms are Bayesian Networks, Rule Induction and Logistic Regression. The problem to tackle is the prediction of women survival diagnosed with breast cancer taking into account four predictor variables gathered at the moment of the diagnosis. The data file includes 1000 diagnosed cases at the Oncological Institute of Gipuzkoa (Basque Country). The validation of the paradigms was carried out using the 10-fold cross-validation method

    Pharmacokinetics and pharmacodynamics of meropenem by extended or continuous infusion in low body weight critically ill patients

    Get PDF
    Background: Pathophysiological changes such as extreme body weights in critically ill patients with severe infections may alter the pharmacokinetics (PK) of antimicrobials, leading to treatment failure or toxicity. There are almost no PK data on meropenem in critically ill patients with low body weight (LwBW) and therefore information is lacking on the most appropriate dosing regimens, especially when administered by extended infusion. Objectives: To assess if the current administered doses of meropenem could lead to supratherapeutic concentrations in LwBW patients and to identify the factors independently associated with overexposure. Methods: A matched case-control 1:1 study of surgical critically ill patients treated with meropenem administered by extended or continuous infusion and undergoing therapeutic drug monitoring was conducted. Cases (patients with LwBW (body mass index (BMI) MIC was considered an optimal pharmacokinetic/pharmacodynamic (PK/PD) target and 100% fT > 10 × MIC as supratherapeutic exposure. Results: Thirty-six patients (18 cases and 18 controls) were included (median (range) age, 57.5 (26-75) years; 20 (55.6% male)). Meropenem was administered by 6 h (extended) or 8 h (continuous) infusion at a median (range) daily dose of 5 (1-6) g/day. Similar median meropenem trough plasma concentrations (Cmin,ss), measured pre-dose on day three to four of treatment) were observed in the two groups (19.9 (22.2) mg/L vs 22.4 (25.8) mg/L, p > 0.999). No differences in the proportion of patients with an optimal or a supratherapeutic PKPD target between cases and controls were observed. A baseline estimated glomerular filtration rate (eGFR) < 90 mL/min was the only factor independently associated with a supratherapeutic PK/PD target. Conclusions: LwBW seems not to be a risk factor for achieving a supratherapeutic PK/PD target in critically ill patients receiving meropenem at standard doses by extended or continuous infusion
    corecore